(MV)[M^{III}X₅] (MV: methylviologen; M: Bi, Sb; X: Cl, Br, I): A New Family of Ferroelectrics

<u>Nicolas Leblanc</u>,¹Nicolas Mercier,¹ Pascale Auban-Senzier,² Claude Pasquier² ¹ MOLTECH Anjou, UMR-CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France ² Laboratoire de Physique des Solides, UMR-CNRS 8502, Bât. 510, Université Paris Sud, 91405

The ns² elements of groups 14 et 15 are well known to give materials with ferroelectric properties, as in BiFeO₃, for which the bismuth(III) lone pair stereoactivity is clearly correlated to the dielectric properties.

We found that the methylviologen dication, has stabilized unprecedented $M^{III}X_5$ chains (M= Bi, Sb) of trans-connected MX₆ octahedra (the much more common isomer (M= Bi, Sb, X= I, Br, Cl) corresponds to the chain of cis-connected octahedra,), and this can be correlated to the electron acceptor behavior of the organic entitites which consequently modulates the charge density at the organic-inorganic interface.^[1] The first characterized compound, (MV)[BiBr₅], is centrosymmetric at ambient temperature, and built from regular chains of octahedra (stereo-inactivity of the lone pair). At -30°C, the material undergoes a ferroelectric transition, due to the stereo-activation of the bismuth(III) lone pair and the presence of polar chains (P2₁ polar structure)^[2] (Figure). The ferroelectric behavior of (MV)[BiBr₅] has been confirmed by pyroelectricity measurements.

In this communication, we will present a series of new compounds recently achieved, and belonging to either the (MV)[M^(III)X₅] type, or the mixed halide (MV)[M^(III)X_{5-x}X'_x] type (M= Bi, Sb, X= I, Br, Cl). Their general structural layout is alike, but the structures can differ one from each other due to the nature of the MX₅ chains, polar or apolar, regular (M-X_{bridging}-M bond angle close to 180°) or distorted (M-X_{bridging}-M bond angle close to 130°), the coupling between chains (in case of polar chains), the nature of the intermediate phases (case of mixed halide salts), either defined compounds or compounds belonging to a solid solution. The majority of these (MV)[MX₅] compounds form a new family of ferroelectrics. The synthesis, crystal structures and dielectric properties investigations will be described.

Figure – Structures of α - et β - (MV)[BiBr₅] showing two BiBr₅ chains and the coordination polyhedron around Bi³⁺, octahedral (β - phase - left), and distorted octahedral leading to polar BiBr₅ chains (α phase - right). Graph : Dielectric constant ε ' versus T for different applied frequencies (Inset: thermal cycling of the dielectric constant at a fixed frequency ε ').

[1] N. Mercier, N. Louvain, W. Bi CrystEngComm 2009, 11, 720-734.

[2] W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier and C. Pasquier Chem Mater 2009, 21, 4099-4101.